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Abstract. Towards NonBeing (Priest, 2005) gives a noneist account of the semantics of inten-
tional operators and predicates. The semantics for intentional operators are modelled on those for
the � in normal modal logics. In this paper an alternative semantics, modelled on neighborhood
semantics for �, is given and assessed.

§1. Introduction. In Towards Non-Being1 I gave a semantics for intentional operators
(‘. . . believes that . . . ’, ‘. . . fears that . . . ’, etc.). The semantics is modeled on the semantics
of the 2 operator in normal modal logics. In these logics, the modal operator corresponds
semantically to a binary relation, R, and:

w � 2A iff for all w′ such that wRw′, w′ � A

where w � B means that B holds at world w. The modal 2 operator has a significantly
different sort of semantics, however: neighborhood semantics.2 In these, at each world, w,
there is a set of subsets of worlds, 2w, and:

w � 2A iff [A] ∈ 2w

where [A] is the set of worlds where A holds. Moreover, modeling the semantics of inten-
tional operators on these semantics offers the prospect of some significant advantages.3 The
purpose of this paper is to investigate neighborhood semantics for intentional operators.

§2. The semantics of TNB. TNB gives a noneist semantics for intentional operators.
The worlds in an interpretation all have the same domain. What exists at each world is
determined by the extension of the monadic existence predicate at that world. The domain
of each world may therefore contain things that do not exist there.

More relevant for present purposes, the worlds may be not only possible but impossible.
This is necessary since the worlds, among other things, realize the contents of our in-
tentional propositional states, and these may be impossible: one may believe that one
has squared the circle, or dream that one’s mother is one’s father. Impossible worlds are
obtained using the standard technology of relevant logic.4 In particular, truth and falsity

Received: January 9, 2009
1 Priest (2005). Hereafter, TNB.
2 Neighborhood semantics were invented by Montague (1970) and Scott (1970). On these

semantics, see Chellas (1989), Waagbø(1992), Arló-Costa and Pacuit (2006), and Sillari (2008).
3 As observed in Priest (2009, 1.3).
4 As in Priest (2001, chapters 9 and 10).
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are treated even-handedly. Generalizing the treatment of 2 in normal modal logics: for
each object, d, and each intentional operator, �, there is a binary relation, Rd

� , and the
truth/falsity conditions for sentences containing the operator are as follows:

w �+ a� A iff for all w′ such that wRδ(a)
� w′, w′ �+ A

w �− a� A iff for some w′ such that wRδ(a)
� w′, w′ �− A

where δ(a) is the denotation of a, w �+ B means that B is true at w, and w �− B means
that B is false there.

If matters were left at this, however, intentional operators would have a variety of prop-
erties that they do not, as a matter of fact, have. These properties fall under the sobriquet
of logical omniscience. Since validity is defined in terms of truth preservation at the actual
world, @, which must be possible, we have neither of:

If � A then � a� A
If A � B then if a� A � a� B

But we do have:

(1) If � A → B then a� A � a� B
(2) a� A, a� B � a�(A ∧ B)

And since the domains are constant, we have the analogues of the Barcan formula and the
Converse Barcan formula:5

(3) Ax a� A � a�Ax A
(4) a�Ax A � Ax a� A

These inferences fail for most unidealized intentional operators.
To destroy these inferences, TNB introduces a new class of impossible worlds, open

worlds. These are not closed under entailment. (If our intentional states are not closed
under entailment, then neither should be the worlds that realize them.) Essentially, at open
worlds every sentence with free variables, x1, . . . , xn , behaves as an atomic sentence.6

Thus, if w is such a world:

w �+ A(a1, . . . , an) iff 〈δ(a1), . . . , δ(an)〉 ∈ δ+
w(A(x1, . . . , xn))

w �− A(a1, . . . , an) iff 〈δ(a1), . . . , δ(an)〉 ∈ δ−
w(A(x1, . . . , xn))

where δ+
w(A(x1, . . . , xn)) and δ−

w(A(x1, . . . , xn)) are the extension and anti-extension of
A(x1, . . . , xn) at w, respectively. Thus, the overall structure of the worlds may be depicted
as follows:

Open worlds

Possible worlds

@

5 Following TNB, I write the particular and universal quantifiers asS and A, respectively.
6 The exact details are a little bit more complicated, since they employ the notion of a matrix, which

I explain later.
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§3. Neighborhood semantics. To generalize the neighborhood semantics for 2 to
intentional operators, we take an interpretation to be a structure 〈@, W, N , R, D, δ〉.7 W is
a set of worlds; N ⊆ W is the set of possible worlds; @ ∈ N . R is a ternary relation on W ,
subject to the constraint that if w ∈ N :8

(*) Rwxy iff x = y

D is the nonempty domain of quantification. For every constant in the language, c, δ(c)∈D,
and for each n-place predicate, P , and w ∈ W , δw(P) is a pair comprising the extension
and anti-extension of P at w. Let us write this as

〈
P+

w , P−
w

〉
; each member of the pair is

a subset of Dn . Finally, for each intentional operator, �, and each d ∈ D and w ∈ W ,

δ〈w,d〉(�) is a pair of the form
〈
�+

〈w,d〉, �
−
〈w,d〉

〉
.9 Each of the sets in the pair is a set of

subsets of W . In standard fashion, call a set of worlds a proposition; then, essentially the
first member of the pair is the set of propositions that, at w, d �s to be true, and the second
is the set of propositions that, at w, d �s to be false.

To give the truth/falsity conditions for the quantifiers, we suppose the language aug-
mented to contain a name, kd , for each d ∈ D. So for every d ∈ D, δ(kd) = d.10 The
truth/falsity conditions are now given for the closed formulas of the extended language.

Then the truth conditions for atomic sentences are as follows:

w �+ Pt1 . . . tn iff 〈δ(t1), . . . , δ(tn)〉 ∈ P+
w

w �− Pt1 . . . tn iff 〈δ(t1), . . . , δ(tn)〉 ∈ P−
w

For the extensional connectives:

w �+ A ∧ B iff w �+ A and w �+ B
w �− A ∧ B iff w �− A or w �− B

w �+ A ∨ B iff w �+ A or w �+ B
w �− A ∨ B iff w �− A and w �− B

w �+ ¬A iff w �− A
w �− ¬A iff w �+ A

For the conditional operator, we have:11

w �+ A → B iff for all x, y, such that Rwxy, when x �+ A, y �+ B
w �− A → B iff for some x, y, such that Rwxy, x �+ A and y �− B

The effect of the condition (*) is to collapse the truth/falsity conditions at possible worlds
to the more familiar looking conditions for an S5 strict conditional:

7 I take the object language to be the same as in TNB, except that I ignore function symbols to
keep things simple. As there, I do not address the issue of an appropriate proof theory for the
semantics.

8 Further constraints can be added, generating stronger relevant logics. See Priest (2001, chapter
10).

9 In neighborhood semantics, the operator dual to � is best taken as defined. Thus if a� A is
‘a knows that A’, then ‘for all a knows it is possible that A’, is ¬a�¬A.

10 In TNB, I gave the semantics of the quantifiers in terms of evaluations of the free variables. This
is equivalent. I follow the present approach because it is simpler.

11 See Priest (2006, 19.8). In TNB, I used a different semantics for → at impossible worlds; I use
the ternary relation semantics here because, in the present context, they are simpler.
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w �+ A → B iff for all x ∈ W , when x �+ A, x �+ B
w �− A → B iff for some x ∈ W , x �+ A and x �− B

If A is any formula, Ax (t) is the formula obtained from A by substituting t for each free
occurrence of x . For the quantifiers, we then have:

w �+ Sx A iff for some d ∈ D, w �+ Ax (kd)
w �− Sx A iff for all d ∈ D, w �− Ax (kd)

w �+ Ax A iff for all d ∈ D, w �+ Ax (kd)
w �− Ax A iff for some d ∈ D, w �− Ax (kd)

For the truth/falsity conditions of the intentional operators, one more piece of notation
is required. Let [A]+ be the set of worlds where A is true, and [A]− be the set of worlds
where it is false. Then:

w �+ a� A iff [A]+ ∈ �+
〈w,δ(a)〉

w �− a� A iff [A]− ∈ �−
〈w,δ(a)〉

To complete the job, we need a definition of logical consequence. This is the standard:

� � A iff for every interpretation I, if @ is the base world of I, then if @ �+ B for all
B ∈ �, @ �+ A

It is not now difficult to show that all the versions of logical omniscience cited in the
last section fail. Here are counter-models for (1) and (3). (2) and (4) are left as exercises.
For (1):

W = N = {@, w}
D = {d}
δ(a) = δ(b) = d

P+
@ = {d}, P+

w = φ

Q+
@ = Q+

w = {d}
�+

〈@,d〉 = {{@}}
Other information is irrelevant. � Pa → (Pa ∨ Qa), but the interpretation shows that
b� Pa � b�(Pa ∨ Qa). Observe that:

[Pa]+ = {@}
[Pa ∨ Qa]+ = {@, w}

@ �+ b� Pa, since [Pa]+ ∈ �+
〈@, δ(b)〉. But @ �

+ b�(Pa ∨ Qa), since [Pa ∨ Qa]+ /∈
�+

〈@, δ(b)〉.
For (3):

W = N = {@, w}
D = {d, e}
δ(a) = d
P+

@ = {d}, P+
w = {e}

�+
〈@,d〉 = {{@}, {w}}

Other information is irrelevant. The interpretation shows that Ax a� Px � a�Ax Px .
Observe that:
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[Pkd ]+ = {@}
[Pke]+ = {w}
[Ax Px]+ = φ

@ �+ a� Pkd , since [Pkd ]+ ∈ �+
〈@,δ(a)〉; similarly, @ �+ a� Pke. Hence, @ �+

Ax a� Px . But @ �
+ a�Ax Px , since [Ax Px]+ /∈ �+

〈@,δ(a)〉.

§4. Logical omniscience: The most virulent form. Unfortunately, there is one fur-
ther form of logical omniscience that even these semantics do not break:

(5) If � A ↔ B then a� A � a� B

For if � A ↔ B, then in any interpretation [A]+ = [B]+. Hence, for any d, [A]+ ∈ �+
〈@,d〉

iff [B]+ ∈ �+
〈@,d〉. Yet this is just as implausible. For example, as in all standard relevant

logics � Pa ↔ ¬¬Pa. But one can certainly, for example, believe that ¬¬Pa without
believing Pa. Intuitionists believe in such a way.

In TNB, the inference (5) is rendered invalid by the presence of open worlds. In the
present semantics, we do not have to invoke a whole new class of worlds; we can simply
tweak the notion of proposition employed. We do this with the help of the TNB machinery
of matrices.

Given any closed formula, A, of the language, we obtain its matrix as follows. We may
suppose that the variables of the language are enumerated: v0, v1, . . . . Let m be the least
number greater than every n such that vn occurs bound in A. Starting on the left of A,
and moving right, we replace every occurrence of an individual constant with vm , vm+1,
vm+2, . . . , in that order. Note, in particular, that if a constant occurs more than once, dif-
ferent variables will be used to replace it on each occasion. The following table illustrates:

Formula Matrix

Sab ∨ Pc Sv0v1 ∨ Pv2
Av6Sav6b Av6Sv7v6v8
Sv3Sv3v3 Sv3Sv3v3
¬Pa → Av0Sv0a ¬Pv1 → Av0Sv0v2

Clearly, different formulas can have the same matrix, and each formula is a substitution
instance of its matrix. We will call a formula itself a matrix if it is the matrix of some
closed formula or other. If A is a formula, I will write its matrix as AM .

The modified semantics are exactly the same as the old, except that we change the
relevant notion of proposition. Call an iproposition (intensional proposition), anything of
the form

〈
AM , X

〉
, where X is a proposition. The thought here can be illustrated as follows.

Suppose that Pa and Qa have the same truth values every world of an interpretation,
and hence that they express the same proposition with respect to that interpretation. Then
[Pa]+ and [Qa]+ are the same. Yet

〈
Pv0, [Pa]+

〉
and

〈
Qv0, [Qa]+

〉
are different ipropo-

sitions, since the formulas have different matrices. We now take �+
〈w,d〉 and �−

〈w,d)〉 to be
sets, not of propositions, but of ipropositions; correspondingly, the truth/falsity conditions
of a sentence containing � are:
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w �+ a� A iff
〈
AM , [A]+

〉 ∈ �+
〈w,δ(a)〉

w �− a� A iff
〈
AM , [A]−

〉 ∈ �−
〈w,δ(a)〉

It is easy enough to modify our former counter-models to show that (1)–(4) still fail. But
now (5) fails as well. Here is a counter-model.

W = N = {@}
D = {d}
δ(a) = δ(b) = d
P+

@ = {d}
�+

d,@ = {〈Pv0, {@}〉}
Other information is irrelevant. � Pa ↔ ¬¬Pa, but the interpretation shows that b� Pa
� b�¬¬Pa. Observe that:

[Pa]+ = [¬¬Pa]+ = {@}
@ �+ b� Pa, since 〈Pv0, {@}〉 ∈ �+

〈@,δ(b)〉; but @ �
+ b�¬¬Pa, since 〈¬¬Pv0, {@}〉 /∈

�+
〈@,δ(b)〉.
The notion of an iproposition is a quite natural one. In some sense, for example, Pa

and ¬¬Pa express different propositions (thoughts). Thus, the first could be grasped by
someone who has no understanding of negation; the second could not. Real propositions
cannot be individuated simply as sets of worlds, even when we have impossible worlds of
the kind employed here at our disposal. Building certain syntactic concepts into the notion
of a proposition, as ipropositions do, is a way of capturing this “fine-graining”. It remains
the case that different formulas can have the same matrices. Thus, suppose that in some
interpretation a = b holds at @, and (for the moment) that we have the substitutivity of
identicals (SI). Then [Pa]+ = [Pb]+, and

〈
Pv0, [Pa]+

〉 = 〈
Pv0, [Pb]+

〉
. So c� Pa is true

at @ iff c� Pb is.12 As we shall see in Section 7, however, once SI fails, [Pa]+ and [Pb]+
may be distinct, even when a = b holds at @.

§5. Do the semantics work? So much for the semantics. The world structure of these
is simpler than that of TNB, since we have eschewed open worlds, and so have just:

Impossible worlds

Possible worlds

@

True, we have complicated the semantics of the intentional operators a little; but, overall,
the structure does seem simpler.

The issue to be faced at this point is whether the semantics work. With respect to this, one
might raise (at least) two questions. Do the quantifiers work properly? Do the impossible
worlds function as required?

12 The situation is effectively the same in the matrix semantics of TNB. Under the same conditions,
Pa is true at any world iff Pb is—whether the world is closed or open. Hence, c� Pa is true at
@ iff c� Pb is.
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Concerning the first question, it is important that we can quantify into intentional contexts
sensibly. Contra Quinean orthodoxy, one can make perfectly good sense of examples such
as: Hob believes that a witch blighted his corn, and Nob believes her to have cursed his
sow:

Sx(h�(x is a witch ∧ x blighted h’s corn)∧ n�(x cursed n’s sow)).

The following inferences also make perfectly good sense:

John believes Father Christmas to exist
Father Christmas does not exist
Something which does not exist is believed by John to do so

George believes Osama bin Laden to be alive
Dick believes Osama bin Laden to be alive
Someone is such that both George and Dick believes him to be alive

The behavior of quantifiers depends on two structural properties of interpretations.

Locality Lemma. Let 〈@, W, N , R, D, δ1〉 and 〈@, W, N , R, D, δ2〉 be two interpreta-
tions. Write the respective holding relations as �1 and �2. For any A in the language of the
interpretations, if δ1(c) = δ2(c), δ1(P) = δ2(P), and δ1(�) = δ2(�), for every constant,
c, predicate, P , and intentional operator, �, in A, then for every w ∈ W :

w �+
1 A iff w �+

2 A

w �−
1 A iff w �−

2 A

Denotation Lemma. Let 〈@, W, N , R, D, δ〉 be an interpretation. Let A be any formula
of the language of the interpretation with at most one free variable, x , and let a and b be
any constants such that δ(a) = δ(b). Then for any w ∈ W :

w �+ Ax (a) iff w �+ Ax (b)

w �− Ax (a) iff w �− Ax (b)

The lemmas can be proved by a straightforward induction. Proofs can be found in a
technical appendix to this paper. Given these lemmas, quantifiers satisfy all the standard
laws of quantification theory.13

In this context, it is worth noting the following. A natural thought is to take the ipropo-
sition expressed by B to be

〈
B, [B]+

〉
. (So the first member of the pair is B itself, not its

matrix.) If one were to do this, however, the proof of the Denotation Lemma would break
down in the case for �, as consulting it will show.

Turning to the second question, we must ask whether the impossible worlds in the
construction function as required. In the semantics for → in use here, if B holds at every
world of every interpretation, then A → B is a logical truth, even though A is absolutely
unrelated to B. Similarly, if A fails at every world of every interpretation, then A → B is a
logical truth even though, again, A is absolutely unrelated to B. If the conditional is to be
a relevant one, then, we require:

13 See, for example, Priest (2008, 14.7).
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Maximum Variation Lemma. For every A:

for some worlds, w, in some interpretations, w �+ A
for some worlds, w, in some interpretations, w �

+ A

The proof of this lemma is also to be found in the technical appendix.14

Note that in the semantics of TNB the Maximum Variation Lemma is trivial, because of
the way that open worlds are defined. But it is also more important. Given these semantics,
if A is true at all worlds of all interpretations, then anything of the form a� A is everywhere
true; and if A is true at no world of any interpretation ¬a� A is nowhere true. Real inten-
tional operators have no such degenerate properties. (There is nothing such that I must
believe, fear, etc., that.) In the present semantics, if Maximum Variation were to fail, then
there would be As for which [A]+ = W or [A]+ = φ; but since each of these sets may or
may not be a member of �+

〈w,δ(a)〉, nothing general follows about intentional operators.

§6. Identity. The foregoing assumes that identity is not in the language. If it is added
to the language, new complications arise. In relevant logics, δw(=) = 〈=+

w, =−
w

〉
, subject

to the constraint that:

If w ∈ N then =+
w= {〈d, d〉 : d ∈ D}

This says, essentially, that at possible worlds identity behaves in a standard fashion (the
anti-extension of identity does no real work with respect to the properties of identity). But
at impossible worlds identity can behave nonstandardly: in particular, its extension and
anti-extension can vary arbitrarily, just like any other predicate. These semantics verify the
standard laws of identity (Identity and SI), as well as preserving the Maximum Variation
Lemma (which makes identity a good citizen of a relevant logic).15

Unfortunately, in the context of intentional operators, SI is not what is wanted. I can un-
derstand that Venus is Venus without understanding that Venus is the Morning Star. Hence,
in TNB, chapter 2, a “contingent identity” semantics is given for identity. Neighborhood
semantics, as such, does nothing, to provide counter-models to SI.16 Hence the preceding
semantics need to be modified for contingent identity in the same way.

Specifically, an interpretation is the same as before, except that we add a new component,
Q. Members of Q are to be thought of as the identities, or avatars, of objects at particular
worlds.17 The domain of quantification, D, is now taken to comprise maps, d, from W to Q.
d(w) is the identity of d at w. Moreover, if P is an n-place predicate, including identity,
and δw(P) = 〈

P+
w , P−

w

〉
, each of P+

w and P−
w must be taken to be subsets of Qn , not Dn .

The truth/falsity conditions of atomic sentences are now as follows. I write d(w) as |d|w:

w �+ Pt1 . . . tn iff 〈|δ(t1)|w , . . . , |δ(tn)|w〉 ∈ P+
w

w �− Pt1 . . . tn iff 〈|δ(t1)|w , . . . , |δ(tn)|w〉 ∈ P−
w

14 The lemma is, of course, satisfied in the semantics of standard relevant logics. The point at issue
is whether the addition of intentional operators preserves this property.

15 See Priest (2008, 24.6).
16 If @ �+ a = b then δ(a) = δ(b). The Denotation Lemma then gives us that @ �+ Ax (a) iff

@ �+ Ax (b).
17 TNB, 2.9.
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All else remains the same. Note that each of =+
w and =−

w is a subset of Q2, subject to the
constraint that if w ∈ N then =+

w= {〈q, q〉 : q ∈ Q}.
These semantics verify the Law of Identity, � Ax x = x , but SI fails in the scope of

intentional operators. Thus, consider the following counter-model to the inference a = b,
c� Pa � c� Pb:

W = {@, w}
N = {@}
D = { f, g, h}
Q = {0, 1, 2}
δ(a) = f , δ(b) = g, δ(c) = h, where

| f |@ = |g|@ = |h|@ = 0
fw = 1
gw = 2

P+
@ = {0}

P+
w = {2}

�+
〈@,0〉 = {〈Pv, {@}〉}

Other information is irrelevant. Since |δ(a)|@ = |δ(b)|@, @ �+ a = b. Note that:

[Pa]+ = {@}
[Pb]+ = {@, w}

Hence, @ �+ c� Pa, since
〈
Pv, [Pa]+

〉 ∈ �+
〈@,0〉, but @ �

+ c� Pb, since
〈
Pv, [Pb]+

〉
/∈

�+
〈@,0〉.
It is not difficult to rework the counterexamples to the various forms of logical om-

niscience in a form appropriate for the contingent identity semantics, showing that these
also avoid these problems. (Details are left as an exercise.) Further, the semantics meet the
same adequacy requirements as before. In particular, the Locality and Denotation Lemmas
continue to hold, the proofs being much the same as before; similarly for the Maximum
Variation Lemma. Proofs may be found in the technical appendix.

§7. Restricted substitutivity. The contingent identity semantics of the last section
invalidate SI within the scope of intentional operators. But they invalidate it also in the
scope of any other operator that has a world-shift in its truth/falsity conditions: even if
a and b have the same avatars at @, they may have different avatars at other worlds. In
particular, SI will not be valid when substituting into the scope of an →. The failure of
SI in such contexts is moot.18 Arguably it fails. It is clear that Venus is inhabited entails
that Venus is inhabited. It is less clear that Venus is inhabited entails that the Morning
Star is inhabited—at least without the extra information in the antecedent that Venus is the
Morning Star. Or again, suppose that we have a statue, s, made out of a lump of gold, g.
That s ceases to exist entails that s ceases to exist. But that s ceases to exist would not
seem to entail that g ceases to exist: the lump of gold could survive the crushing of the
statue. On the other hand, substitutivity is used all the time in conditionals in mathematical
reasoning, so we do need it if such conditionals are employed in mathematics.

18 See Priest (2008, 24.7.10).
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Perhaps the simplest semantic way to regain substitutivity within conditionals, if this
be needed, is as follows. Assuming the necessity of true identity statements, identities are
constant across possible worlds. But they will be constant across some impossible worlds
too. Let S be the class of worlds at which they are constant.19 Add specific mention of this
in the specification of an interpretation. That is, there is a set, S, such that N ⊆ S ⊆ W ,
and for every d ∈ D and w ∈ S, |d|w = |d|@. We may now restrict the worlds relevant to
the truth/falsity conditions of → to S. That is:

w �+ A → B iff for all x, y ∈ S, such that Rwxy, when x �+ A, y �+ B
w �− A → B iff for some x, y ∈ S, such that Rwxy, x �+ A and y �− B

As far as the pure relevant logic goes, these semantics deliver exactly the same logic.
The worlds in W − S simply do no work. Moreover, the semantics still invalidate SI in
intentional contexts. However, it now verifies SI provided that substitution is not being
made into such a context:

SI Lemma. If x is not in the scope of a � in A then a = b, Ax (a) � Ax (b).

The proof is in the technical appendix. The various principles of logical omniscience still
fail. (In the old counter-models, just let S = W .) The proofs of the Locality, Denotation,
and Maximum Variation Lemmas are still essentially the same.

The addition of S does revive the tripartite world structure:

W

S

N
@

This is not by adding a whole new class of worlds (the open worlds), however. It is just by
distinguishing a special subset of the old impossible worlds. So this is still some kind of
theoretical gain.

§8. Conclusion. We have seen how to provide neighborhood world-semantics for in-
tentional operators. The semantics are no less technically adequate than those of TNB
(chapters 1 and 2), and are just as intuitive conceptually. They would also seem to have the
edge on simplicity.

§9. Acknowledgments. Thanks go to Giacomo Sillari, who refereed an earlier draft
of the paper for the Review, for a very careful and helpful set of comments.

19 In the semantics of TNB, one has substitutivity of identicals in the scope of →s. The role of S is
played, in effect, by the closed worlds (pp. 23, 45). In the present semantics, without S, all worlds
are closed.
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§10. Technical appendix. In this appendix, I will give the proofs of the various tech-
nical results cited in the paper.

Proof of Locality Lemma.
I give the proof without identity. In the case of identity, the only thing that changes is the
proof of the atomic case. I indicate the variation in a footnote. The proof is by a joint
recursion on the structure of A. I will do the cases for +. The cases for − are similar. If A
is atomic:20

w �+
1 Pt1 . . . tn iff 〈δ1(t1), . . . , δ1(tn)〉 ∈ P+

w

iff 〈δ2(t1), . . . , δ2(tn)〉 ∈ P+
w

iff w �+
2 Pt1 . . . tn

The proofs for the extensional connectives are all similar. Here is the one for ¬:

w �+
1 ¬B iff w �−

1 B
iff w �−

2 B IH (induction hypothesis)
iff w �+

2 ¬B

For the conditional:

w �+
1 B → C iff for all u, v , such that Rwuv ,

if u �+
1 B then v �+

1 C
iff for all u, v , such that Rwuv ,

if u �+
2 B then v �+

2 C IH
iff w �+

2 B → C

For intentional operators:

w �+
1 a� B iff

〈
B M , [B]+

〉 ∈ �+
〈w,δ1(a)〉

iff
〈
B M , [B]+

〉 ∈ �+
〈w,δ2(a)〉 IH

iff w �+
2 a� B

Finally, here is the case for A. The case for S is similar.

w �+
1 Ax B iff for all d ∈ D, w �+

1 Bx (kd)

iff for all d ∈ D, w �+
2 Bx (kd) IH, since δ1(kd) = δ2(kd)

iff w �+
2 Ax B

�
Proof of Denotation Lemma.
I give the proof without identity. In the case of identity, the only thing that changes is the
proof of the atomic case. I indicate the variation in a footnote. The proof is by a joint
recursion on the structure of A. I will do the cases for +. The cases for − are similar.
Suppose that A is atomic, and, for the sake of illustration, contains only one occurrence
of x :21

w �+ Pt1 . . . a . . . tn iff 〈δ(t1), . . . δ(a), . . . δ(tn)〉 ∈ P+
w

iff 〈δ(t1), . . . δ(b), . . . δ(tn)〉 ∈ P+
w

iff w �+ Pt1 . . . b . . . tn

20 In the case of identity, replace everything of the form δi (c) with |δi (c)|w .
21 In the case of identity, replace everything of the form δi (c) with |δi (c)|w .
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The proofs for the extensional connectives are all similar. Here is the one for ¬:

w �+ ¬Bx (a) iff w �− Bx (a)
iff w �− Bx (b) IH
iff w �+ Bx (b)

For the conditional:

w �+ (B → C)x (a) iff w �+ Bx (a) → Cx (a)
iff for all u, v , such that Rwuv ,

if u �+ Bx (a) then v �+ Cx (a)
iff for all u, v , such that Rwuv ,

if u �+ Bx (b) then v �+ Cx (b) IH
iff w �+ Bx (b) → Cx (b)
iff w �+ (B → C)x (b)

The case for the intentional operators is as follows. t is either a constant or x . If t is a
constant, let t ′ and t ′′ be t ; if t is x , let t ′ be a and t ′′ be b.

w �+ (t� B)x (a) iff w �+ t ′�(Bx (a))

iff
〈
(Bx (a))M , [Bx (a)]+

〉 ∈ �+
〈w,δ(t ′)〉

iff
〈
(Bx (b))M , [Bx (b)]+

〉 ∈ �+
〈w,δ(t ′′)〉 (*)

iff w �+ t ′′�(Bx (b))
iff w �+ (t� B)x (b)

For the line marked (∗): By induction hypothesis, w �+ Bx (a) iff w �+ Bx (b). Hence,
[Bx (a)]+ = [Bx (b)]+. Further, (Bx (a))M = B M = (Bx (b))M . And whatever t is, δ(t ′) =
δ(t ′′).

Finally, here is the case for A. The case for S is similar. Let A be Ay B. If y is x , then
there are no free occurrences of x , and the result is trivial. So suppose that x and y are
distinct. Write By,x (kd , c) for (Bx (kd))y(c).

w �+ (Ay B)x (a) iff for all d ∈ D, w �+ By,x (kd , a)
iff for all d ∈ D, w �+ By,x (kd , b) IH
iff w �+ (Ay B)x (b)

�
Proof of Maximum Variation Lemma.
We prove something stronger, namely that there is an interpretation with worlds, w1 and
w2, such that for all A:

1. w1 �+ A and w1 �− A
2. w2 �

+ A and w2 �
− A

Here is the proof without identity. The proof with identity is exactly the same, except
that one item of the counter-model is different, as indicated in a footnote. Consider an
interpretation where:

W = {@, w1, w2}
N = {@}
R@xx , for all x ∈ W
Rw1w1w1 and Rw2w1w2



372 GRAHAM PRIEST

For every w ∈ W , and n-place predicate, P:22

P+
w1

= P−
w1

= Dn

P+
w2

= P−
w2

= φ

For every w ∈ W, d ∈ D, and operator, �:

�+
〈w1,d〉 = �−

〈w1,d〉 = {〈A, X〉 : where A is a matrix, and X ⊆ Dn}.
�+

〈w2,d〉 = �−
〈w2,d〉 = φ

We prove 1 first. The proof is by a joint recursion on A. Here are the cases for +. The cases
for − are similar.

Since the extension of every predicate is universal at w1, every atomic sentence is true
there. The cases for the extensional connectives are straightforward. For the quantifiers:
w1 �+ Ax B iff for all d ∈ D, w1 �+ Bx (kd), which is true by induction hypothesis. The
case for S is similar. For intentional operators, w1 �+ a� B iff

〈
B M , [B]+

〉 ∈ �+
〈w1,δ(a)〉,

which is true by definition. This leaves the case for →.
w1 �+ B → C iff for all u, v , such that Rw1uv , if u �+ B then v �+ C . This is true

by induction hypothesis, since Rw1w1w1, and w1 accesses nothing else.
Next we prove 2. The proof is by a joint recursion on A. Here are the cases for +. The

cases for − are similar.
Since the extension of every predicate is empty at w2, no atomic sentence is true there.

The cases for the extensional connectives are straightforward. For the quantifiers: w2 �+
Ax B iff for all d ∈ D, w2 �+ Bx (kd), which is not true, by induction hypothesis. The
case for S is similar. For intentional operators, w2 �+ a� B iff

〈
B M , [B]+

〉 ∈ �+
〈w2,δ(a)〉,

which is not true by definition. This leaves the case for →.
w2 �+ B → C iff for all u, v , such that Rw2uv , if u �+ B then v �+ C . This is

not true. Rw2w1w2; by 1, w1 �+ B; and by induction hypothesis, w2 �
+ C . Hence,

w2 �
+ B → C . �

Proof of the SI Lemma.
Suppose in an interpretation that @ �+ a = b. Then |δ(a)|@ = |δ(b)|@; and so for all
w ∈ S, |δ(a)|w = |δ(b)|w. We prove that for all w ∈ S (and so, in particular, @):

w �+ Ax (a) iff w �+ Ax (b)

w �− Ax (a) iff w �− Ax (b)

The result follows. The result is proved by a joint recursion on A. A is made up of atomic
formulas, which may contain x free, and formulas that do not contain x free, by means of
the extensional connectives, quantifiers, and →. I will do the cases for +. Those for − are
similar. If A does not contain x free, the result is trivial. Suppose that A is atomic, and, for
the sake of illustration, contains only one occurrence of x :

w �+ Pt1 . . . a . . . tn iff 〈|δ(t1)|w , . . . |δ(a)|w , . . . |δ(tn)|w〉 ∈ P+
w

iff 〈|δ(t1)|w , . . . |δ(b)|w , . . . |δ(tn)|w〉 ∈ P+
w

iff w �+ Pt1 . . . b . . . tn

22 If we are dealing with identity, replace Dn with Qn in this case and the next.
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The proofs for the extensional connectives and quantifiers are as in the Denotation Lemma.
For the conditional:

w �+ (B → C)x (a) iff w �+ Bx (a) → Cx (a)
iff for all u, v ∈ S such that Rwuv ,

if u �+ Bx (a) then v �+ Cx (a)
iff for all u, v ∈ S such that Rwuv ,

if u �+ Bx (b) then v �+ Cx (b) IH
iff w �+ Bx (b) → Cx (b)
iff w �+ (B → C)x (b) �
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